TD nº 1 – Géométrie hyperbolique élémentaire

Le demi-plan de Poincaré

Le demi-plan $\mathbb{H}^2 = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, appelé demi-plan de Poincaré, est une des représentations du plan hyperbolique. On se propose d'en étudier quelques propriétés. On pourra utiliser les coordonnés complexes ou réelles, $(z, \bar{z}) = (x + iy, x - iy)$. Pour tout $z \in \mathbb{H}^2$, le plan tangent à \mathbb{H}^2 en z est $T_z\mathbb{H}^2 = \{z + u, u \in \mathbb{C}\} \cong \mathbb{C}$. Introduisons quelques objets :

— la métrique hyperbolique $g = (g_z)_{z \in \mathbb{H}^2}$ est une famille de produits scalaires $g_z : T_z \mathbb{H}^2 \times T_z \mathbb{H}^2 \to \mathbb{R}$ dépendant continûment de z, avec

$$g_z(u,v) = \frac{\langle u,v \rangle}{\operatorname{Im}(z)^2} = \frac{\langle u,v \rangle}{y^2}, \quad \forall u,v \in T_z \mathbb{H}^2.$$

Note : le produit scalaire $\langle \cdot, \cdot \rangle$ est le produit scalaire euclidien sur \mathbb{C} . De manière équivalente, la métrique est décrite par le tenseur métrique

$$ds^{2} = \frac{dx^{2} + dy^{2}}{y^{2}} = \frac{dzd\bar{z}}{\text{Im}(z)^{2}}.$$

— La longueur d'un chemin $\gamma:[0,1]\to\mathbb{H}^2$ est donnée par

$$L(\gamma) = \int_{\gamma} ds = \int_{0}^{1} \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt = \int_{0}^{1} \frac{1}{y(t)} \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt,$$

la dernière égalité étant due au fait que tout élément du demi-plan de Poincaré admet une partie imaginaire strictement positive.

— La distance sur \mathbb{H}^2 est définie par

$$d(z, w) = \inf_{\gamma} L(\gamma),$$

où l'infimum est pris sur tous les chemins différentiables $\gamma:[0,1]\to\mathbb{H}^2$ tels que $\gamma(0)=z,$ $\gamma(1)=w.$

Exercice 1. Le groupe des isométries Soit $a, b, c, d \in \mathbb{C}$. La transformation de Möbius associée à (a, b, c, d) est la fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{-\frac{d}{c}\} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{az+b}{cz+d} \end{array} \right.$$

Elle se prolonge par continuité sur la sphère de Riemann $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ en posant $f(-\frac{d}{c}) = \infty$ et $f(\infty) = \frac{a}{c}$.

- 1. Montrer que l'ensemble des transformations de Möbius associées à (a, b, c, d) avec $ad bc \neq 0$ forme un groupe. Il s'agit du groupe des automorphismes de la sphère de Riemann, noté $\operatorname{Aut}(\hat{\mathbb{C}})$.
- 2. Montrer qu'il existe un isomorphisme de groupes entre $\operatorname{Aut}(\hat{\mathbb{C}})$ et le groupe $\operatorname{PSL}(2,\mathbb{C}) = \operatorname{SL}(2,\mathbb{C})/\{\pm 1\}.$
- 3. Montrer qu'il existe un isomorphisme de groupes entre $PSL(2,\mathbb{R})$ et le groupe

$$\{g \in \operatorname{Aut}(\hat{\mathbb{C}}): g(\mathbb{H}^2) = \mathbb{H}^2\}.$$

4. Montrer que $PSL(2,\mathbb{R})$ préserve la métrique sur \mathbb{H}^2 .

5. Montrer que toute transformation de Möbius admet au moins un point fixe. En déduire une classification des isométries de \mathbb{H}^2 .

Exercice 2. Géodésiques

- 1. Montrer que les géodésiques de \mathbb{H}^2 sont les droites verticales et les demi-cercles orthogonaux à \mathbb{R} .
- 2. En déduire que la distance sur \mathbb{H}^2 s'exprime sous la forme suivante :

$$d(z, w) = \cosh^{-1}\left(1 + \frac{|z - w|^2}{2\operatorname{Im}(z)\operatorname{Im}(w)}\right), \quad \forall z, w \in \mathbb{H}^2.$$

Le disque de Poincaré

Exercice 3. Du demi-plan au disque

1. Montrer que l'homographie

$$z \mapsto \frac{z - i}{z + i}$$

est un biholomorphisme entre \mathbb{H}^2 et \mathfrak{D} . Le disque de Poincaré et le demi-plan de Poincaré sont alors deux représentations du plan hyperbolique.

- 2. En déduire de la question 1 et des exercices précédents une description de la métrique, des isométries et des géodésiques de \mathfrak{D} .
- 3. Montrer les identités suivantes dans $\mathfrak D$:

$$\cosh^2\left(\frac{1}{2}d(z,w)\right) = \frac{|1-z\bar{w}|^2}{(1-|z|^2)(1-|w|^2)}, \quad \sinh^2\left(\frac{1}{2}d(z,w)\right) = \frac{|z-w|^2}{(1-|z|^2)(1-|w|^2)}.$$

Trigonométrie

Exercice 4. Triangles hyperboliques Soit ABC un triangle géodésique dans le disque hyperbolique. On note a = |BC|, b = |AC|, c = |AB|, $\alpha = |\widehat{BAC}|$, $\beta = |\widehat{ABC}|$ et $\gamma = |\widehat{BCA}|$ comme sur la figure 1 ci-dessous.

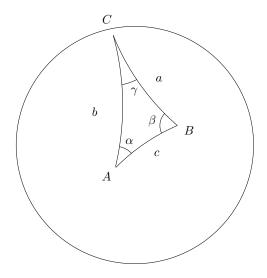


FIGURE 1 – Un triangle hyperbolique

1. Démontrer les formules suivantes.

(a) La loi des cosinus hyperboliques

$$\cosh(c) = \cosh(a)\cosh(b) - \sinh(a)\sinh(b)\cos(\gamma).$$

(b) La loi des sinus hyperboliques

$$\frac{\sinh(a)}{\sin(\alpha)} = \frac{\sinh(b)}{\sin(\beta)} = \frac{\sinh(c)}{\sin(\gamma)}.$$

(c) La formule

$$\cosh(c) = \frac{\cosh(a)\cos(\beta) + \cos(\gamma)}{\sin(\alpha)\sin(\beta)}.$$

2. En déduire l'analogue du théorème de Pythagore pour un triangle rectangle hyperbolique.

Bonus : Inégalité de Cheeger pour les graphes aléatoires

Exercice 5. On se propose de démontrer l'inégalité de Cheeger énoncée dans le premier cours. Soit G = (V, E) un graphe d-régulier tel que $V = \{1, \dots, N\}$. La constante de Cheeger h = h(G) est définie par

$$h(G) = \min_{A \cup B = V} \frac{E(A, B)}{\min(|A|, |B|)},$$

où E(A, B) est le nombre d'arêtes entre A et B. La matrice d'adjacence de G est la matrice $A = (a_{ij})_{1 \leq i,j \leq N}$ définie par $a_{ij} = 1$ si i et j sont reliés par une arête et 0 sinon. Le laplacien du graphe est la matrice L correspondant à l'opérateur

$$Lf: x \mapsto \sum_{y \sim x} (f(x) - f(y)) = (dI - A)f(x).$$

Note : on a $Lf = -\Delta f$ par rapport à la convention du cours! Le trou spectral de G est $\lambda_1 = d - \mu_2$, où μ_2 est la plus grande valeur propre non triviale de A. C'est donc la plus petite valeur propre non nulle de L. L'inégalité de Cheeger est la suivante :

$$\frac{h^2}{2} \le d - \mu_2 \le 2h.$$

- 1. Montrer la borne supérieure.
- 2. Soit π la mesure sur $(V, \mathcal{P}(V))$ définie par $\pi(S) = |S|$. Montrer que pour tout $\psi \in L^2(\pi)$ tel que $L\psi \leq \lambda \psi$ sur $S(\psi) = \{x \in S : \psi(x) > 0\}$, si l'on définit $\psi_+ = \max(\psi, 0)$ la partie positive de ψ ,

$$\lambda \|\psi_{+}\|_{L^{2}(\pi)}^{2} \geq \mathcal{E}(\psi_{+}, \psi_{+}),$$

où \mathcal{E} est l'énergie de Dirichlet

$$\mathcal{E}(\psi, \psi) = \frac{1}{2} \sum_{x \sim y} (\psi(x) - \psi(y))^2 = \langle \psi, L\psi \rangle_{L^2(\pi)}$$

3. Montrer que pour tout $\psi \in L^2(\psi)$ tel que $S(\psi) \neq \emptyset$,

$$\mathcal{E}(\psi_+, \psi_+) \ge \frac{h(\psi)^2 \|\psi_+\|_{L^2(\pi)}^2}{2},$$

οù

$$h(\psi) = \inf \left\{ \frac{E(S, S^c)}{\pi(S)} : S \subset S(\psi), S \neq \varnothing \right\}.$$

4. En déduire la borne inférieure.